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J. Phys. A: Math. Gen. 18 (1985) 3063-3069. Printed in Great Britain 

Analytic solutions to Smoluchowski's coagulation equation: a 
combinatorial interpretation? 

John L Spouge 
Theoretical Biology and Biophysics, Group T-10, Mail Stop K710, Los Alamos National 
Laboratory, Los Alamos, NM 87545, USA 

Received 28 March 1985 

Abstract. Many analytic solutions of the polydisperse coagulation equation 

x , ( O )  = t1 3 0  6. arbitrary 

have combinatorial interpretations. The interpretations are based on random polycondensa- 
tion models from polymer chemistry. The notion of chemical bonding inherent in these 
polymer models introduces additional mathematical structure. This structure allows com- 
binatorial interpretation of the coagulation solutions when the coagulation kernel is bilinear: 

K,, = A + B( i + j )  + Cij. 

The Smoluchowski coagulation equations are the infinite system 

(von Smoluchowski 1916). Equation (1) has the following physical interpretation: 
consider a fixed volume V containing a large number of moving particles. These 
particles we call units. These units vary in mass, but all masses are integral multiples 
of some fundamental mass. We scale the mass units to make fundamental mass one. 
At t = 0, the units begin to clump irreversibly (coagulate). The clumps formed we call 
polymers; a polymer of mass k we call a k-mer; in particular, a k-mer unit  is a unit 
of mass k. (Polymer chemistry provides a convenient terminology, but the applications 
of equation (1) are in fact much broader.) x k (  t )  is the concentration of k-mers in V 
at time t, t k  is the (initial) concentration of k-mer units in V,  K,j = K,i is the rate 
constant for coagulation of i-mers and j-mers. 

KO is called the coagulation kernel. The coagulation equation (1) gives the rate of 
change of k-mer concentration as the sum of two terms representing: 

(1) k-mer formation from coagulation of smaller masses, and 
(2) k-mer disappearance by coagulation with other masses. 

t Work completed under the auspices of the United States Department of Energy. 
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3064 J L Spouge 

Units of volume are usually chosen to normalise the initial mass concentration to unity: 
X 

@k=1* (2) 
k = l  

This paper restricts itself to the bilinear kernels, 

K, = A+ B( i + j )  + Cij ( 3 )  

where A, B and C are arbitrary constants. 
One expects conservation of mass to hold: 

X X 

b k ( t ) =  &k=1* (4) 
k = l  k = l  

Multiply equation (1 )  by k, then sum over k = 1,2,3,  . . . . For the bilinear kernels, the 
series on the right are absolutely convergent when Z k2xk( t )  is, and they have algebraic 
sum zero. The expression on the left is the derivative of equation (4), which is therefore 
constant. 

In fact, for C # 0, Z k2xk( t )  diverges at a finite time, t,, when an infinite aggregate 
(or gel )  forms. After t,, the total mass Z kxk( t )  diminishes as the gel traps more and 
more mass (McLeod 1962, Drake 1972). Post-gel ( t >  t ,)  solutions for equation (11, 
although known (Ziff and Still 1980, Ernst et a1 1984), will not be considered in this 
paper. 

Let 

Sk = b + ak. ( 5 )  

(Model I)  ( 6 u )  

(Model 11) K ,  = siCj = b+ a ( i + j )  (66) 

Ziff et a1 (1984) give the following transformation linking two solutions 

k,  = sisj = b2 + ab( i + j )  + a'ij 

of the coagulation equation (1 ) .  Let {Ck(t)} be the solutions { x k ( t ) }  for model I and 
{ n k ( t ) }  be the solutions for model 11. Then the gel time for model I satisfies 

m 1 
-= U kskCk(0). 
t c  k = l  

(7) 

If the initial conditions of the two models are linked by 

nk(0) = tcaskCk(O), (8) 

n k (  t )  = e-a'tcaskck( t,( 1 -e-")). (9) 

then the solutions are related by 

The transformation maps the pre-gel interval [0, t , )  of model I onto the interval [O,OO) 
of model I1 (which does not gel). 

Note that the kernels of equation ( 6 )  are special cases of bilinear kernels ( 3 )  that 
Spouge (1983a) solves as follows. Let 
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Then for t < t,, summing equation (1) over k = 1,2 ,3 , .  . . yields 

d p . / d t = - & ( A p 2 + 2 B p + C ) P - f D ( p )  
(11) 

p(0)  FO. 

( A  denotes a definition.) Let {&U: U = 1, 2, .  . . , k ;  k = 1,2,3, .  . .} satisfy the (computa- 
tionally practical) recursion 

6 k l  = 6 k  k = 1,2,3,  . . . 

U = 2 , 3 , .  . . , k (12) 
Kij 

( U - l ) t k u =  c c - 
t + j = k  r + s = u  D(p0)  

w h e r e i = l , 2  , . . . ,  k - l a n d r = l , 2  , . . . ,  U-1.  Then , for t< t , ,  

where 

exp[(p - pO-tCf)kI  A=O 

x k u ( t )  = &ku (PO - p D ( P )  (B'A)k AC - B* (14) [-] DbO)  exp[(- A )kr] A g o .  

Spouge (1983a) gives these equations for a continuous mass spectrum (equation (14a) 
of that paper should read x ( p  - 1) rather than xp) .  In that paper, po was normalised 
to be one. Here the normalisation is not possible because the fundamental mass fixes 
the units of mass. The table of Spouge (1983a) gives solutions of equation (1 1) subject 
to po= 1;  trivial manipulation of that table gives table 1 here. 

This paper demonstrates that equations (7)-(9) and (lo)-(  14) have forms dictated 
by combinatorial considerations. The demonstration requires knowledge of the Flory 

Table 1. Solutions of dp/dt = -4(Ap2+2Bp + C ) ,  ~ ( 0 )  = po, pI  = [ - B f ( B 2 -  
A C ) ' I 2 ] / A ,  a = - B / A ,  y = ( A C  - B 2 ) ' / ' / A .  

Cases f P 

2 Po-P  

A POP 
-- C = O , B = O  

C = O , B # O  L In (  AIL+2B e) 
B Apo+2B p 

C f O , A = O , B = O  : ( p o - p )  

2Po 
Apof + 2 

2BPLl 
( A p o + 2 B )  e E ' - A  

2p0 - Cr 
2 
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(1941) polymer models, RA, (solved by Stockmayer (1943)) and A,RB,-, (solved by 
Flory (1952) for g = 1, and Spouge (1983b, c) for general g). 

In the RA, polymer model, each monomer has f functional groups of the type A 
(see figure 1). The monomers react subject to three conditions. 

; A @ A  

A I  
I 

I A  
A Q A  

‘.L/ 
A /  

Figure 1. This figure shows two RA, polymers, a 6-mer, and a 3-mer reacting to form a 
9-mer. The broken curves encircle the original units that formed the polymers, and double 
lines indicate bonds present at t = 0. Single lines indicate bonds that have formed after 
I = 0. The 6-mer contains 3 units, so it is a 3-unit 6-mer. 

(i) functional groups of the type A react with one another to form bonds between 
the monomers, 

(ii) intramolecular reactions do not occur (so that only branched-chain (non-cyclic) 
polymers are formed), and 

(iii) Flory’s principle of equireactivity: subject to conditions (i) and (ii), all 
unreacted functional groups are equally likely to react; i.e., reaction takes place at 
random. 

The A,RB,-, polymer model is similar, except that each monomer has g functional 
groups of the type A, f - g  of the type B, and condition (i) is replaced by 

(i ): functional groups of the type A react with those of the type B to form bonds 
between the monomers. 

For these two models the coagulation kernels are 

(RA, model) 

K ,  = [2 + (f- 2) i][2 + (f - 2 )  j] 

(A,RB,-, model) 

K,j = [l  + ( f - g -  l) i][l  + ( g -  l) j]+[l  + ( g -  l) i][l  + ( f - g -  1)jl.  (156) 

ProoJ: In the RAf model, an i-mer has j? functional groups. The number of bonds 
equals i - 1 because the polymers are branched-chain (condition (iii)). The number of 
functional groups consumed by bonding is 2( i - 11, so each i-mer has f i  - 2 (  i - 2) = 
2 + ( f - 2 ) i  unreacted functional groups. Equation (15a)  gives the number of ways an 
i-mer can react with a j-mer. Within an irrelevant constant of proportionality (which 
can be absorbed into the time scale of equation ( l ) ) ,  this is K,,. 

Similarly, for the A,RBf-, model, each i-mer has (f- g) i  - ( i  - 1) = 1 + (f- g - l ) i  
unreacted B groups and gi - ( i  - 1) = 1 + ( g  - 1)i  unreacted A groups. A similar calcula- 
tion for j-mers yields the K ,  of equation (15b). For g = 1, 
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(ARB,-, model) 

K,j = 2 + (f - 2 ) (  i + j ) .  (15c) 

Note that the kernels of equations (15) are all bilinear (equation (3)). In addition 
(as noted by Ziff er a1 1984), equations (15a)  and (15c) are special cases of equations 
(6a)  and (66) with a =f- 2 and b = 2. Figure 2 gives the combinatorial interpretation 
behind the transformation of equations (8) and (9). 

0 

2 

( a )  (bl 

Figure 2. The arrow indicates a random unreacted A group. Since the polymers lack rings, 
they may be represented as  family trees, where the different circle sizes represent t he  
different unit sizes. ( a )  shows an  RA, polymer, while ( b )  shows the corresponding A R B , _ ,  
polymer. The text shows that  the recursive structure of the generations 0, 1,2,. . . in the 
family tree forces correspondence between the polymer models. 

Let the concentrations of the initial units be given by equation (8), where {Ck(t)} 
represents the RA, model and {flk(t)} the ARB,-, model. Equation (8) guarantees 
that the probability that a random A group belongs to a k-mer unit, 

is the same for both models. (In the RA, model, s k  is the number of unreacted A 
groups on a k-mer.) The existence of k-mer units (k  > 1) implies that some functional 
groups have already reacted at r = 0. Call the other functional groups virgin groups. 
As time progresses, the virgin groups react. At any time t ,  let a, the extent of reaction, 
be the proportion of virgin A groups that have reacted in the RA, system and the 
proportion of virgin B groups that have reacted in the ARB,-, system. (The time t 
yielding a fixed a differs for the two systems.) Let us compare the RA, and ARB,_, 
models at fixed a. 

Pick a random unreacted A group from the system. The probability that this belongs 
to a k-mer in either model is 

(17) 
s k C k ( a )  - - 

EF-1 s k C k ( a )  xT=1 f l k ( a ) '  

Figure 2 proves the equality as follows. 
The probability that the unreacted A group belongs to a k-mer unit is the same for 

both models (equation ( 16)). Because of equireactivity, the remaining functional 
groups on the unit have reacted independently of one another with probability a. In 
both RA, and ARBf-, these reacted functional groups lead to a random reacted A 
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group. The probability that the reacted A group belongs to a k-mer unit is the same 
for both models (equation (16)), etc. Continuing recursively, we find that equation 
(16) is sufficient to enforce equation (17). 

Equation (17) gives the form for equation (9). Clearly, if t is the time for the extent 
of reaction a in the ARBfpl model, t,(l -e-ar)  is the time for the same extent of 
reaction in the RAf model. This change of parameter, as well as determination of the 
sums in equation (17), will not be done explicitly since it is combinatorially 
uninstructive. 

Likewise, equations (lo)-(  14) have a combinatorial interpretation. As the units 
coagulate, a particle can be characterised by its mass and by the number of units it 
contains. As Spouge (1983a) points out, x k u ( t )  is the concentration at time t of k-mers 
which are composed of U units (call these u-unit k-mers) .  Equation (13) states that 
each k-mer contains U units, U = 1 , 2 , .  . . , k. 

In the Flory polymer models, because of equireactivity, bonds have formed ran- 
domly between the units. For a fixed extent of reaction a, it does not matter whether 
these bonds were formed reversibly or irreversibly, they are still formed a t  random. (van 
Dongen and  Ernst (1984) exploit this fact to solve a version of equation (1)  allowing 
fragmentation.) We can regard the polymerisation process as an  equilibrium system 
and use the principle of detailed balance (Lewis 1925, Kelly 1978): 

( u - l ) X k u ( t ) = K ( t )  c c K , x , , ( t ) x , , ( t )  u = 2 , 3  , . . . ,  k. (18) 

The left side is proportional to the rate at  which random bonds are broken in u-unit 
k-mers. Since the units maintain their integrity in the equilibrium analogy (only virgin 
groups react at random in the kinetic formulation), only the U - 1 bonds between the 
U units can break (see figure 1). The sums on the right are proportional to the rate at 
which random bonds are formed to produce u-unit k-mers. K ( t )  is the constant of 
proportionality giving the appropriate extent of reaction a. 

Since k-mer units, being units, are never formed in the kinetic formulation, but 
only disappear by coagulation with other polymers, 

~ + , = k  I + T = U  

= - x k 1 ( A p  + B + ( B p  + C)k] .  (19) 
Because p ( t )  is known (equation ( l l ) ) ,  and  because x k l ( o ) = &  (i.e., at t =0,  all 
particles are units), this yields equation (14) for U = 1, which we write as 

X k I ( t ) A  S k l g ( f ) f k ( t ) .  (20) 
Comparing equations (12) and (18) and  noting equation (20) shows 

xku ( t )  = '!ku [ ( t ,  (PO) g ( f ,  1 '-lg ( ) fk ( t ,  A [kuh ( ) g (  t ,  fk ( t ) .  (21 

h ( t )  is most easily determined by substituting equation (21) into 

Equation (22), which keeps track of u-unit k-mers, is analogous to equation (1). 
Simplifying equation (22) as we did equation (19) and  substituting equation (2), 
determines h ( t )  and yields equation (14) for Xku(t). 
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Many analytic solutions of the coagulation equation can be related to the Flory 
models of polymerisation and, as such, have forms dictated by combinatorial consider- 
ations. It would be interesting to know if analytic solutions of related equations (e.g., 
Leyvraz 1985) have similar interpretations. 
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